Лекция 8 Тема. Исследование функции и построение графика.

План лекции:

- 1) Локальный экстремум функции. Возрастание и убывание функции.
- 2) Глобальный экстремум функции. Наибольшее и наименьшее значение непрерывной функции на отрезке.
- 3) Точки перегиба функции. Исследование функции на выпуклость.
- 4) Асимптоты.
- 5) Схема построения графика функции.

§1. Локальный экстремум функции. Возрастание и убывание функции.

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 .

ОПРЕДЕЛЕНИЕ. Функция y = f(x) имеет в точке x_0 локальный максимум (минимум), если существует такая окрестность точки x_0 , в которой при $x \neq x_0$ выполняется неравенство $f(x) < f(x_0)$ [соответственно $f(x) > f(x_0)$]. Точки локального максимума и минимума называют точками экстремума функции. Локальный максимум и локальный минимум функции объединяются общим названием локальный экстремум функции (или экстремальные значения функции). Точки, в которых первая производная функции обращается в нуль или терпит разрыв, называются точками возможного экстремума (или критическими точками).

ОПРЕДЕЛЕНИЕ. Интервалы, в которых функция не убывает или не возрастает, называются интервалами монотонности функции.

Характер монотонности функции может изменяться только в тех точках ее области определения, в которой меняется знак первой производной. Если функция y = f(x) непрерывна на отрезке [a,b], а ее производная положительна или равна 0 на интервале (a,b), то y = f(x) возрастает на [a,b]. $(f'(x) \ge 0)$. Если функция y = f(x) непрерывна на отрезке [a,b], а ее производная отрицательна или равна 0 на интервале (a,b), то y = f(x) убывает на [a,b]. $(f'(x) \le 0)$.

Теорема (необходимое условие локального экстремума). Если функция y = f(x) имеет в точке x_0 экстремум, то производная f'(x) в точке x_0 или равна нулю ($f'(x_0) = 0$), или не существует.

Теорема (первое достаточное условие существования экстремума). Пусть функция y = f(x) дифференцируема в некоторой окрестности точки возможного экстремума (за исключением, быть может, самой точки x_0). Если при переходе через точку x_0 производная f'(x) меняет знак с плюса на минус (с минуса на плюс), то в точке x_0 функция y = f(x) имеет локальный максимум (минимум). Если при переходе через точку x_0 производная функции не меняет знака, то в точке x_0 функция y = f(x) не имеет экстремума.

Теорема (второе достаточное условие экстремума). Пусть в точке x_0 возможного экстремума функция y = f(x) имеет вторую производную $f''(x_0)$. Тогда если $f''(x_0) < 0$ ($f''(x_0) > 0$), то функция y = f(x) имеет в точке x_0 локальный максимум (минимум).

Алгоритм исследования функции на экстремум.

- 10. Найти производную функции.
- 2^{0} . Найти критические точки, т. е. точки, в которых функция непрерывна, а производная равна нулю или не существует.

- 3⁰. Рассмотреть окрестность каждой из точек и исследовать знак производной слева и справа от этой точки.
- 4⁰. Определить координаты экстремальных точек. Для этого значения критических точек подставить в данную функцию. Используя достаточные условия экстремума, сделать соответствующие выводы.

Пример 1. Исследовать на экстремум функцию $y = x^3 - 9x^2 + 24x$

Решение. $y' = 3x^2 - 18x + 24 = 3(x - 2)(x - 4)$. Приравняв производную нулю, находим $x_1 = 2$, $x_2 = 4$. В данном случае производная определена всюду; значит, кроме двух найденных точек, других критических точек нет. Знак производной y' = 3(x - 2)(x - 4) изменяется в зависимости от промежутка. При переходе через точку x = 2, производная меняет знак с плюса на минус, а при переходе через точку x = 4 с минуса на плюс. Следовательно, в точке x = 2 функция имеет максимум, $y_{\text{max}} = 20$, а в точке x = 4 - минимум $y_{\text{min}} = 16$.

§2. Глобальный экстремум функции. Наибольшее и наименьшее значение непрерывной функции на отрезке.

На отрезке [a; b] функция y=f(x) может достигать наименьшего ($y_{\text{наим}}$) или наибольшего ($y_{\text{наиб}}$) значения либо в критических точках функции, лежащих в интервале (a; b), либо на концах отрезка [a; b]. То есть, чтобы найти наибольшее и наименьшее значение (глобальный максимум и минимум) функции y = f(x) на отрезке [a,b], следует сначала найти все значения экстремума функции в интервале (a,b), а потом найти значения функции на концах отрезка (т.е. в точках a и b), затем среди всех этих значений выбрать наибольшее и наименьшее.

Теорема. Если дифференцируемая на интервале (a,b) функция y = f(x) имеет единственную точку экстремума, то в этой точке достигается наибольшее или наименьшее значение (глобальный максимум или минимум) функции на интервале (a,b).

Подытожим:

Алгоритм отыскания наибольшего и наименьшего значений непрерывной функции y = f(x) на отрезке [a,b]

- 1^{0} . Найти f'(x).
- 2^{0} . Найти точки, в которых f'(x) = 0 или f'(x) не существует, и отобрать из них те, которые лежат внутри отрезка [a;b].
- 3^{0} . Вычислить значения функции y = f(x) в точках, полученных в п.2), а так же на концах отрезка и выбрать из них наибольшее и наименьшее: они и являются соответственно наибольшим (у_{наиб.}) и наименьшим (у_{наим.}) значениями функции на отрезке [a;b].

<u>Пример 2.</u> Найти наибольшее значение непрерывной функции $y = x^3 - 3x^2 - 45x + 225$ на отрезке [0;6].

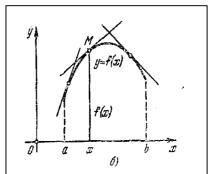
Решение. $y' = 3x^2 - 6x - 45$. Производная y' существует при всех x. Найдем точки, в которых f'(x) = 0; получим $3x^2 - 6x - 45 = 0$, $x^2 - 2x - 15 = 0$; $x_1 = -3$; $x_2 = 5$. Отрезку [0;6] принадлежит лишь точка x = 5. Вычислим значение функции в точках x = 0, x = 5 и x = 6;

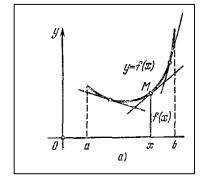
X	0	5	6	Наибольшим из найденных значений функции является 225, а
Y	225	50	63	наименьшим – число 50. Итак, у _{наиб} =225, у _{наим} =50.

§3. Точки перегиба функции. Исследование функции на выпуклость.

Пусть функция y = f(x) имеет в каждой точке интервала (a,b) конечную производную. Тогда в каждой точке $M(x,f(x)), x \in (a,b)$ кривая y = f(x) имеет касательную, не параллельную оси Oy.

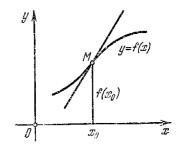
ОПРЕДЕЛЕНИЕ. Функция y = f(x) называется выпуклой вверх (вниз) на интервале (a,b), если соответствующая часть кривой y = f(x) для любого $x \in (a,b)$ расположена не выше (не ниже) касательной, проведенной в любой ее точке M(x, f(x)) (см. рис. 6, с).





Теорема. Если на интервале (a,b) существует вторая производная функции y=f(x) и если эта производная неотрицательна $f''(x) \ge 0$ (не положительна $f''(x) \le 0$) всюду на этом интервале, то кривая y=f(x) имеет на интервале (a,b) выпуклость, направленную вниз (вверх).

ОПРЕДЕЛЕНИЕ. Точкой перегиба кривой y = f(x) называется точка $M(x_0; f(x_0))$, при переходе через которую кривая меняет свою выпуклость вниз на выпуклость вверх или наоборот. Говорят также, что в точке $M(x_0; f(x_0))$ кривая имеет перегиб.



Теорема (необходимое условие перегиба). Если кривая y = f(x) имеет перегиб в точке $M(x_0; f(x_0))$ и вторая производная f''(x) непрерывна в точке x_0 , то $f''(x_0) = 0$.

Теорема (достаточное условие перегиба). Если в некоторой окрестности точки x_0 существует вторая производная функции y = f(x), причем $f''(x_0) = 0$, и в пределах этой окрестности слева и справа от точки x_0 знаки f''(x) различны, то кривая имеет перегиб в точке $M(x_0; f(x_0))$.

Правило нахождения точек перегиба

- 1) Найти точки, в которых f''(x) не существует или обращается в нуль.
- 2) Исследовать знак f''(x) слева и справа от каждой найденной на первом шаге точки.
- 3) На основании сформулированных теорем сделать соответствующий вывод.

Пример 3. Найти точки экстремума и точки перегиба графика функции $y=3x^4-8x^3+6x^2+12$ *Решение.* Имеем $f'(x)=12x^3-24x^2+12x=12x(x-1)^2$. Очевидно, что f'(x)=0 при $x_1=0$ и $x_2=1$. Производная при переходе через точку x=0 меняет знак с минуса на плюс, а при переходе через точку x=1 не меняет знака. Значит, x=0 - точка минимума ($y_{\min}=12$), а в точке x=1 экстремума нет. Далее, находим $f''(x)=36x^2-48x+12=36(x-1)\left(x-\frac{1}{3}\right)$. Вторая производная обращается в нуль в точках $x_1=1, x_2=\frac{1}{3}$. Знаки второй производной изменяются следующим образом: На луче $\left(-\infty;\frac{1}{3}\right)$ имеем f''(x)>0, на интервале $\left(\frac{1}{3};1\right)$ имеем f''(x)<0,

на луче $(1; +\infty)$ имеем f''(x) > 0. Следовательно, $x = \frac{1}{3}$ - точка перегиба графика функции (переход с выпуклости вниз на выпуклость вверх) и x = 1 - так же точка перегиба (переход с выпуклости вверх на выпуклость вниз). Если $x = \frac{1}{3}$, то $y = 12\frac{11}{27}$; если x = 1, то y = 13.

§4. Асимптоты.

ОПРЕДЕЛЕНИЕ. Прямая x=a называется вертикальной асимптотой кривой y=f(x), если хотя бы один из односторонних пределов этой функции в точке x=a равен $+\infty$ или $-\infty$, т.е. $\lim_{x\to a\pm 0}f(x)=\pm\infty$.

Вертикальные асимптоты следует искать среди точек разрыва II рода. Очевидно, непрерывные функции (в частности многочлены) не имеют вертикальных асимптот. ОПРЕДЕЛЕНИЕ. Прямая y = kx + b называется наклонной асимптотой кривой y = f(x) при $x \to +\infty$, если f(x) представима в виде $\mathbf{f}(\mathbf{x}) = \mathbf{k}\mathbf{x} + \mathbf{b} + \alpha(\mathbf{x})$, где $\lim_{x \to +\infty} \alpha(\mathbf{x}) = \mathbf{0}$.

Если наклонная асимптота существует, то коэффициенты k и b находятся по формулам:

$$k = \lim_{x \to +\infty} \frac{f(x)}{x}; \qquad b = \lim_{x \to +\infty} (f(x) - kx).$$

Аналогично определяется наклонная асимптота и для случая $x \to -\infty$. Если число k = 0, то наклонную асимптоту обычно называют горизонтальной.

Пример 4. Найти асимптоты для функции
$$f(x) = \frac{x^3 - 6x^2 + 3}{2x^2 + 5}$$
.

Решение. Очевидно, вертикальных асимптот нет, так как нет точек разрыва. Далее

$$\lim_{x \to \infty} \frac{x^3 - 6x^2 + 3}{x(2x^2 + 5)} = \lim_{x \to \infty} \frac{x^3 - 6x^2 + 3}{2x^3 + 5x} = \frac{1}{2}; \implies k = \frac{1}{2},$$

$$\lim_{x \to \infty} \left(\frac{x^3 - 6x^2 + 3}{2x^2 + 5} - \frac{1}{2}x \right) = \lim_{x \to \infty} \frac{-12x^2 - 5x + 6}{4x^2 + 10} = -3, \implies b = -3.$$

Следовательно, уравнение наклонной асимптоты имеет вид $y = \frac{1}{2}x - 3$.

§5. Схема построения графика функции.

При исследовании функции и построении ее графика предлагается следующая *примерная схема*:

- I. Найти область определения функции.
- II. Найти точки пересечения графика функции с осями координат.
- III. Найти асимптоты.
- IV. Найти точки возможного экстремума.
- V. Найти точки возможного перегиба.
- VI. С помощью вспомогательного рисунка исследовать знак первой и второй производных. Определить участки возрастания и убывания функции, найти направление выпуклости графика, точки экстремумов и точек перегиба.
- VII. Построить график, учитывая исследование, проведенное в п.1-6.

Пример 5. Построить график функции
$$f(x) = \frac{x^2 + 1}{x - 1}$$
.

Решение.

I. Областью определения функции является множество всех вещественных чисел, кроме x = 1.

- **II.** Так уравнение $x^2 + 1 = 0$ не имеет вещественных корней, то график функции не имеет точек пересечения с осью Ох, но пересекает ось Оу в точке (0;-1).
- **III.** Выясним вопрос о существовании асимптот. Исследуем поведение функции вблизи точки разрыва x=1. Так как $y\to -\infty$ при $x\to 1-0$, $y\to +\infty$ при $x\to 1+0$, то прямая x=1 является вертикальной асимптотой графика функции. Если $x\to +\infty$ ($x\to -\infty$), то $y\to +\infty$ ($y\to -\infty$); следовательно, горизонтальной асимптоты у графика нет. Далее, из существования пределов

$$k = \lim_{\substack{x \to +\infty \\ (x \to -\infty)}} \frac{f(x)}{x} = \lim_{\substack{x \to +\infty \\ (x \to -\infty)}} \frac{x^2 + 1}{x(x - 1)} = \lim_{\substack{x \to +\infty \\ (x \to -\infty)}} \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x}} = 1.$$

$$\lim_{\substack{x \to +\infty \\ (x \to -\infty)}} (f(x) - kx) = \lim_{\substack{x \to +\infty \\ (x \to -\infty)}} \left(\frac{x^2 + 1}{x - 1} - x \right) = \lim_{\substack{x \to +\infty \\ (x \to -\infty)}} \frac{x^2 + 1 - x^2 - x}{x - 1} = \lim_{\substack{x \to +\infty \\ (x \to -\infty)}} \frac{1 + x}{x - 1} = 1$$

следует, что при $x \to +\infty$ и при $x \to -\infty$ график функции имеет наклонную асимптоту y = x + 1. **VI.** Для нахождения точек возможного экстремума вычислим первую производную функции:

$$f'(x) = \left(\frac{x^2 + 1}{x - 1}\right)' = \frac{2x(x - 1) - (x^2 + 1)}{(x - 1)^2} = \frac{2x^2 - 2x - x^2 - 1}{(x - 1)^2} = \frac{x^2 - 2x - 1}{(x - 1)^2}.$$

Решая уравнение $x^2-2x-1=0$, получаем две точки возможного экстремума: $x_1=1-\sqrt{2}$ и $x_2=1+\sqrt{2}$.

V. Для нахождения точек возможного перегиба вычислим вторую производную:

$$y'' = (f'(x))' = \left(\frac{x^2 - 2x - 1}{(x - 1)^2}\right)' = \frac{(2x - 2)(x - 1)^2 - 2(x - 1)(x^2 - 2x - 1)}{\left((x - 1)^2\right)^2} = \frac{(x - 1)((2x - 2)(x - 1) - 2(x^2 - 2x - 1))}{\left((x - 1)^2\right)^2} = \frac{2x^2 - 2x - 2x + 2 - 2x^2 + 4x + 2}{(x - 1)^3} = \frac{4}{(x - 1)^3};$$

f''(x) в нуль не обращается, но при x=1 не существует.

VI. Исследуем знак первой и второй производных. Точки возможного экстремума, подлежащие рассмотрению: $x_1 = 1 - \sqrt{2}$ и $x_2 = 1 + \sqrt{2}$, разделяют область существования функции на интервалы $(-\infty; 1 - \sqrt{2}), (1 - \sqrt{2}; 1 + \sqrt{2})$ и $(1 + \sqrt{2}; +\infty)$.

В каждом из этих интервалов производная сохраняет знак: в первом — плюс, во втором — минус, в третьем — плюс. Последовательность знаков первой производной запишется так: +,-,+. Получаем, что функция на $(-\infty;1-\sqrt{2})$ возрастает, на $(1-\sqrt{2};1+\sqrt{2})$ убывает, а на $(1+\sqrt{2};+\infty)$ снова возрастает. Точки экстремума: максимум при $x=1-\sqrt{2}$, причем $f(1-\sqrt{2})=2-2\sqrt{2}$; минимум при $x=1+\sqrt{2}$, причем $f(1+\sqrt{2})=2+2\sqrt{2}$. На $(-\infty,1)$ график направлен выпуклостью вверх, а на $(1,+\infty)$ - вниз.

VII. Составим таблицу полученных значений

X	(-∞;1-	1-√2	$(1-\sqrt{2};)$	1	$(1;1+\sqrt{2})$	$1+\sqrt{2}$	(1+√2;∞)
	$\sqrt{2}$)						
f'(x)	+	0	-	∞	-	0	+
f''(x)	_	_	-		+	+	+
	выпукла	выпукла	выпукла	∞	выпукла	выпукла	выпукла
	вверх	вверх	вверх		вниз	вниз	вниз
f(x)		$y_{\text{max}}=2-2\sqrt{2}$		8		$y_{min} = 2 + 2\sqrt{2}$	

VIII. По полученным данным строим эскиз графика функции.

<u>Пример 6.</u> Провести полное исследование и построить график

функции
$$f(x)=(x+2) e^{\frac{1}{x}}$$
.

Решение.

1) Область определения функции. Классификация её точек разрыва. $f(x): \mathbb{R} \setminus \{0\} \to \mathbb{R}$.

$$x=0$$
 - точка разрыва II рода, так как $\lim_{x\to 0+} (x+2)e^{\frac{1}{x}} = +\infty$,

$$\lim_{x \to 0^{-}} (x+2)e^{\frac{1}{x}} = 0 +$$

2) Асимптоты кривой.

x = 0 - вертикальная асимптота.

Найдём наклонные асимптоты:
$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x+2}{x} e^{\frac{1}{x}} = 1$$
,

$$b = \lim_{x \to \pm \infty} [f(x) - kx] = \lim_{x \to \pm \infty} \left[(x+2)e^{\frac{1}{x}} - x \right] = \lim_{x \to \pm \infty} \left[(x+2)\left(1 + \frac{1}{x} + o\left(\frac{1}{x}\right)\right) - x \right] =$$

$$=\lim_{x\to +\infty} [x+1+o(1)+2-x] = 3 \implies y = x+3$$
 - наклонная асимптота при $x\to \pm \infty$.

Функция непериодическая, общего вида. 3) Периодичность. Чётность.

,	1	, ,		J ,	1
4)	Нули	функции.	Промежутки	сохранени	я знака.
1,	-0	$\sim r2$)		

4) nym	а фун	акции. П	громежут	си сохран	ения знака
y = 0	\Leftrightarrow	x = -2			
		_			

монотонности.
$$y' = e^{\frac{1}{x}} - (x+2)e^{\frac{1}{x}} \cdot \frac{1}{x^2} = \frac{x^2 - x - 2}{x^2} e^{\frac{1}{x}}$$
 $y' = 0 \iff x^2 - x - 2 = 0$

монотонности.
$$y' = e^{\frac{1}{x}} - (x+2)e^{\frac{1}{x}} \cdot \frac{1}{x^2} = \frac{x^2 - x - 2}{x^2}e^{\frac{1}{x^2}}$$

 $x = 2, \quad x = -1;$

$$y' \neq \infty$$
;
∄ y' при $x = 0$.

6).	Точки	перегиба.
Про	омежутк	Ш
выі	туклости	и функции.

Промежутки	f(x)	#	$\frac{111ax, -}{e}$		
выпуклости функции.					_
$y'' = \frac{(2x-1)x^2 - 2x(x^2 - x^4)}{x^4}$	-x-2)	$\frac{1}{x} - \frac{x^2 - x}{x^2 x}$	$\frac{-2}{2}e^{\frac{1}{x}}=\frac{5}{2}$	$\frac{5x+2}{x^4}e^{\frac{1}{x}}$	

0

$$y'' = 0 \quad \Leftrightarrow \quad x = -\frac{2}{5};$$

$$y'' \neq \infty$$
;

		•	
∄	<i>y</i> "	при	x=0.

x	$\left(-\infty;-\frac{2}{5}\right)$	$-\frac{2}{5}$	$\left(-\frac{2}{5};0\right)$	0	(0;+∞)
f''(x)	_	0	+	∄	+
f(x)	\cap	T.II., $\frac{8}{5e^2\sqrt{e}}$	U	∄	C

(-1; 0)

(0;2)

×

 \exists

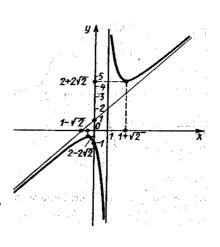
7) Особенности функции.

Определим угол, под которым график функции приближается к началу координат слева:

$$\lim_{x\to 0^-} f'(x) = \lim_{x\to 0^-} \frac{x^2-x-2}{x^2} e^{\frac{1}{x}} = 0$$
 - это предел, к которому стремится тангенс угла наклона к оси

абсцисс левой полукасательной к графику функции в начале координат; следовательно, этот угол равен 0°.

Задание. По приведенному исследованию постройте график самой функции.



-2;0)

0

min, $4\sqrt{e}$

0

 $\overline{\mathcal{H}}$

 $(2;+\infty)$

 $(0;+\infty)$